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The Structure Factor S(Q)
Elastic scattering



The scattering triangle

• ki is the incident 
wavevector and kf is the 
scattered wavevector

• Sometimes those are 
also written as k0 or k’

• We define Q as our 
momentum transfer
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Momentum transfer, or Q-space
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For elastic scattering, 
no energy transfer

𝑘𝑘𝑖𝑖 = 𝑘𝑘𝑓𝑓



And the differential cross section for elastic scattering
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neutrons

x-rays

• bi is the neutron scattering length of atom
i at position Ri

• Q is the momentum transfer

• r0 is the Thomson x-ray scattering 
length

• f(Q) is the atomic form factor

• P(2θ) is the polarization factor
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Note that the definition of the cross section (the fact that it doesn’t say how far away we observe from the sample and the fact that we observe neutrons within a solid angle) basically tells us that we are in a “far field” approximation—so we know that the must be measuring Fraunhoffer diffraction rather than Fresnel diffraction.
 we have pushed some things under the rug here. For example, we have assumed that none of the nuclei move, at least during the time the neutron interacts with them. This is the static approximation, which is not correct for neutrons because the time taken for a neutron to travel a distance of order a few angstroms is ~10^-13 seconds which is the same as a typical lattice relaxation time. To be accurate we ought to label each Ri with a time t and set t = 0 (I.e. static approx)



Diffraction and Bragg’s law
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Ghkl is called a reciprocal lattice vector (node denoted hkl)

h, k and l are called Miller indices
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Previously we learned of the  Fourier transform
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Let’s explore the structure factor Fhkl for crystals

𝐹𝐹ℎ𝑘𝑘𝑘𝑘 = �
𝑗𝑗=1

𝑁𝑁

𝑓𝑓𝑗𝑗𝑒𝑒𝑖𝑖𝑄𝑄�𝑟𝑟𝑗𝑗

For N atoms in the unit cell

When Ghkl = Q, Bragg’s Law
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The structure factor for non-Bravais Crystals

Q Q
Q Q
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Note – this Bragg law is due to the son. The father’s Bragg peak has to do with energy loss of particles as a function of penetration
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Structure factors for neutrons and x-rays

Neutrons add up the scattering 
lengths multiplied by the phase factor

x-rays add up the form factors 
multiplied by the phase factor

Delta function is for Bragg condition (Q = Ghkl)

Debye-Waller factor for thermal motion of atoms



The Structure Factor S(Q) beyond crystalline matter
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If ρN(r) is the nuclear density function

S(Q) is in square of the Fourier 
transform of this function

Nanoscale-ordered Materials 
Diffractometer (SNS)



S(Q) as the Fourier transform of pair distribution function g(r)
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Dynamics and S(Q,ω)
Energy transfer 



X-ray & Neutron Scattering Determine a Variety of Structures

2.1(2)nm

1.9(2)nm

10.7(2)nm Fe

MgO

β = 3.9(3)

β = 5.2(3)

β = 4.4(2)

β = 3.1(3)

0.20(1)nm

0.44(2)nm

0.07(1)nm

0.03(1)nm

X-Ray

β = 4.4(8)

β = 8.6(4)

β = 6.9(4)

β = 6.2(5)

Neutron

α-FeOOH

interface

but what happens when the atoms are moving?

• Can we determine the directions and 
• time-dependence of atomic motions?
• Can well tell whether motions are periodic?
• These are the types of questions answered by inelastic 

neutron & x-ray scattering

crystals
surfaces & interfaces disordered/fractals biomachines
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Atomic structure using single-crystal or powder diffraction including PDF and magnetism
Surface reflection – structures near surfaces and interfaces (contrast conditions important)
Surface reflection studies of magnetism
SANS studies of He bubbles in steel, fractal rocks etc – structures without long-range order
SANS studies of biological entities – looking at distances between components



Now we are after S(Q,ω)

ℏ𝜔𝜔 = 𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑓𝑓

𝐸𝐸 =
ℏ2𝑘𝑘2

2𝑚𝑚𝑛𝑛

Energy of a 
neutron for 
certain 
wavelength

ℏ𝜔𝜔 =
ℏ2

2𝑚𝑚𝑛𝑛
(𝑘𝑘𝑖𝑖2 − 𝑘𝑘𝑓𝑓2)𝑄𝑄 = 𝑘𝑘𝑓𝑓 − 𝑘𝑘𝑖𝑖 Momentum transfer

Energy transfer
For neutrons, energy resolution 
is not as small as it is for x-rays

∆𝐸𝐸
𝐸𝐸

~10 %
∆𝐸𝐸
𝐸𝐸

~10−7

neutrons x-rays



Scattering triangle for inelastic processes
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Elastic scattering configuration

Inelastic configuration: 
neutron energy loss

Inelastic configuration: 
neutron energy gain



How to think about the various energy scales

From Tranquada, Shirane, and Shapiro, “Neutron Scattering from a Triple Axis Spectrometers: Basic Techniques”



Fermi’s Golden Rule and the double differential cross section

• Neutrons interact very weakly with matter
• The scattering process will cause a change from a one quantum state 

to another
• BUT, it will not modify the nature of the states themselves

�
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2

𝒌𝒌𝑓𝑓𝜆𝜆𝑓𝑓 𝑉𝑉 𝒌𝒌𝑖𝑖𝜆𝜆𝑖𝑖
2𝛿𝛿(ℏ𝜔𝜔 + 𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑓𝑓)

Delta function, 
observation for energy 
transfer at certain hw

The interaction 
operator of neutron 
with the sample

The two quantum 
states, initial and final



S(Q,ω) and the double differential cross section

𝑑𝑑2𝜎𝜎
𝑑𝑑Ω𝑑𝑑𝑑𝑑

= 𝑁𝑁
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𝑘𝑘𝑖𝑖
𝑏𝑏2𝑆𝑆(𝑄𝑄,𝜔𝜔)

N = number of nuclei

t = time



Inelastic neutron scattering measures atomic motions
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• Inelastic coherent scattering measures correlated motions of  different atoms
• Inelastic incoherent scattering measures self-correlations e.g. diffusion
• These days it is possible to do inelastic scattering using x-rays also. 
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The pair correlation functions
1. Elastic, coherent neutron scattering is proportional to the spatial Fourier 

Transform of the Pair Correlation Function, G(r) i.e. the probability of finding 
a particle at position r if there is simultaneously a particle at r=0

2. Inelastic coherent neutron scattering is proportional to the space and time
Fourier Transforms of the time-dependent pair correlation function function,
G(r,t) = probability of finding a particle at position r at time t when there is a 
particle at r=0 and t=0.

3. Inelastic incoherent scattering, the intensity is proportional to the space and 
time Fourier Transforms of the self-correlation function, Gs(r,t) i.e. the 
probability of finding a particle at position r at time t when the same particle 
was at r=0 at t=0



Step 1: construct a frozen wave of atomic density
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Step 2: What happens if the wave moves?
• If the wave moves through the chain, the scattering still occurs at wavevectors G + k and G – k but now the 

scattering is inelastic

• In a crystal, the vibration frequency at a given value of q (called the phonon wavevector) is determined by 
interatomic forces.  These frequencies map out the so-called phonon dispersion curves.

phonon dispersion curves
for a crystal of 36Ar

From Roger Pynn
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A phonon is a quantized lattice vibration
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Atomic motions for longitudinal & transverse phonons

Transverse phonon Longitudinal phonon
Q Q
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Transverse optic and acoustic phonons
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Inelastic magnetic scattering of neutrons

• In the simplest case, atomic spins in a ferromagnet precess about the direction 
of mean magnetization
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Two (of several) ways to do inelastic scattering

Triple-axis spectrometer

CG-4C  cold TAS (HFIR)

Time-of-flight spectrometer

ARCS (SNS)



Energy and wavevector transfers accessible to neutron scattering
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Magnetic scattering
S(Q,ω) from M



The neutron and its moment

Neutron spin
γ = gyromagnetic ratio
µN = nuclear magneton
σ = spin operator

g = 2 for spin only
f(Q) magnetic form factor

Spin amplitude of atom in crystal 
is pM



The magnetic form factor and structure factor

Taken from D. H. Ryan, McGill University 



The magnetic interaction vector
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Illustration by Chuck Majkrzak

Neutron can have 
also initial 
polarization and 
final polarization 
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d Simple Cubic
Lattice

c

a

b

Crystallographic 
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First, let’s look at nuclear scattering once again
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More on the structure factor for nuclear scattering



Famous Illustration by
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Magnetic Scattering



Magnetic Scattering

Crystallographic 
Unit Cell Magnetic 

Unit Cell

Crystallographic Unit Cell ≠ Magnetic Unit Cell

Simple Cubic
Lattice

c

a

b

Crystallographic 
Directions



Magnetic Scattering Z Component

Y Component

X

Y

Z

Z 
Co

m
po

ne
nt

Y 
Co

m
po

ne
nt

X

X



Neutrons can be polarized

PI
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kF

kI

In addition to measuring 
initial and final k, and energy 
of neutron, one can also 
measure its polarization



Two traditional ways to polarize neutrons
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ζ, η, ξ is our reference frame
P0 is always along ζ



Vertical polarization

The non-spin flip channels

The spin flip channels
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Uniaxial polarization along Q
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Example: Parent superconductor Fe1+xTe

• Fe1+xTe is an antiferromagnetic 
semiconductor or semimetal 
depending on value of x.

• x is the amount of interstitial iron 
between the FeTe sheets

• Structurally similar to the FeAs-
based superconductors

• Magnetic properties and magnetic 
structure also dependent on x.

• Becomes superconducting with 
anion substitution, e.g. FeTe1-ySey
and FeTe1-ySy

Tetrahedral iron

Interstitial iron



Vertically polarized neutron diffraction on crystals
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Polarized results for Fe1+xTe crystal, x = 12 %

• Two magnetic structures related
• One is a spiral, resolution-limited
• Other is a spin density wave, with broad 

peak width
• Spectral weight is shifted as transition 

temperature is approached



Questions?
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