

Lee Robertson
Neutron Technologies Division
Oak Ridge National Laboratory

21st National School on Neutron and X-ray Scattering June 16-June 29, 2019

Sunday, June 16, 2019

What is a Neutron Scattering Instrument?

- Neutron scattering experiments measure the number of neutrons scattered by a sample as a function of the wavevector change (Q) and the energy change (E) of the neutron.
- What do we need to accomplish this?
 - 1) A source of neutrons
 - 2) A method for selecting the wavevector of the incident neutrons (ki)
 - 3) A very interesting sample
 - 4) A method for determining the wavevector of the scattered neutrons (kf)
 - 5) A neutron detector

Why Not Just Build a Universal Neutron Scattering Instrument That Can Do Everything We Need?

- Two types of sources (continuous and pulsed)
- Two methods for determining the neutron wavevector, k (time-of-flight and diffraction)
- Two types of scattered neutrons (elastic and inelastic)
- Two types of interactions between the neutrons and the sample (nuclear and magnetic)
- Wide range of length scales driven by the science
- The energy of the neutron is coupled to its wavelength and velocity: $\lambda^2(\mathring{A}^2) \sim 81.81/E(\text{meV})$ and $v^2(\text{m}^2/\text{s}^2) \sim 191313 \times E(\text{meV})$
- S(Q,E) the scattering properties of the sample depend only on Q and E, not on the neutron wavelength(λ)
- Message: Many different types of neutron scattering instruments are needed Scattered Wavevector Detector because the accessible Q and E ranges depend on the neutron energy and because the resolution and detector coverage have to be tailored to the science for such a signal-limited technique.

Pulsed vs Continuous Neutron Sources

Neutron Scattering Instruments at Continuous Sources Are Typically Based on Diffraction Techniques

Neutron Scattering Instruments at Pulsed Sources Are Typically Based on Neutron Time-of-Flight Techniques

Detectors

v(1.8Å) = 2187m/s

 $TOF(s) = D(m)/v(m/s) = [D(m) \times \lambda(A)]/3956.0339$

D=20m, TOF(1Å)=0.005s, TOF(2Å)=0.010s, Δ TOF=0.005s

 $\lambda(Å) = (3956.0339 * TOF(s)) / D(m)$

Neutron Optics

The following neutron optical components are typically used to construct a neutron scattering instrument

- Monochromators / Analyzers: Monochromate or analyze the energy of a neutron beam using Bragg's law
- Choppers: Define a short pulse of neutrons or select a small band of neutron energies
- Guides / Mirrors: Allow neutrons to travel large distances without suffering intensity loss
- Polarizers / Spin Manipulators: Filter and manipulate the neutron spin
- Collimators: Define the direction of travel of the neutrons
- Detectors: Neutron position (and arrival time for TOF) is recorded.
 Neutrons are typically detected via secondary ionization effects.

Instrument Resolution

- Uncertainty in the neutron wavelength and direction limit the precision that Q and E can be determined
- For scattering, the uncertainty comes from how well k_i and k_f can be determined
- For TOF, the uncertainty primarily comes from not knowing the exact start time for each neutron
- The total signal observed in a scattering experiment is proportional to the phase space volume within the elliptical resolution volume – the better the resolution, the lower the count rate

Figure borrowed from Roger Pynn

Liouville's Theorem

- In the geometrical-optics the propagation of neutrons can be represented as trajectories in a six-dimensional phase space (p, q), where the components of q are the generalized coordinates and the components of p are the conjugate momenta.
- Simply stated, Liouville's Theorem says that phase space volume is conserved.
- Translation: It costs flux to increase resolution and it costs resolution to increase flux.
- There is no way to win!

Choppers and Velocity Selectors

Disk Chopper

Fermi Chopper

Neutron Mirrors and Supermirrors / Neutron Guides

80m Guide for HRPD at J-PARC Fabricated by Swiss Neutronics

Multichannel Curved Guide Fabricated by Swiss Neutronics

Guide Installation at ISIS

Polarizers and Spin Manipulators

Heussler Monochromator

AlCuMn

Larmor Precession Flipper

³He Spin Filters

Spherical Neutron Polarimetry

POLI-HEIDi at FRMII

Elastic Neutron Scattering Instruments

- Elastic instruments include:
 - Powder diffraction
 - Single Crystal diffraction
 - SANS (typical)
 - Reflectometry
- Used to determine the average structure of materials (i.e. how the atoms are arranged)

TOF Powder Diffractometer: POWGEN (SNS)

$$d = \frac{\lambda}{2\sin\theta} = \frac{2\pi}{Q}$$

$$d = \frac{(3956.0339*TOF)/D}{2 \sin \theta}$$

 $\lambda(A) = (3956.0339*T0F(s)/D(m)$ For POWGEN D = 64.5m

Sr₂Fe_{1.5}Mo_{0.5}O₆, Electrode Material for Solid Oxide Fuel Cells

Small Angle Neutron Scattering (SANS)

TmNi₂B₂C Vortex Lattice

PHYS REV B 86, 144501 (2012)

Magnetism Reflectometer (SNS)

PHY REV B **84**, 245310 (2011)

Fe-N

60

60

Z(nm)

80

Z (nm)

80

-200 mT

—50 mT —5 mT

Neutron Imaging

Carbon foam matrix in a Li battery (H. Bilheux and S. Voisin)

Inelastic Neutron Scattering Instruments

- Inelastic instruments include:
 - Direct Geometry TOF Spectrometers
 - Indirect Geometry TOF Spectrometers
 - Triple-Axis Spectrometers
 - Backscattering Spectrometers
 - Neutron Spin-Echo Spectrometers
- Used to study dynamics such as phonons, magnons, and diffusion (i.e. what the atoms are doing)

SEQUOIA: A Direct Geometry TOF Spectrometer at the SNS

Quantum oscillations of nitrogen atoms in uranium nitride

Nature Communications v3, p1124 (2012)

Triple-Axis Spectrometer

HB-3

Fixed-Incident-Energy Triple-Axis Spectrometer · HB-1A

Low-energy excitations, magnetism, structural transitions

neutrons.ornl.gov/fietax

Polarized Triple Axis Spectrometer • HB-1

Polarized neutron studies of magnetic materials, low-energy excitations, structural transitions

neutrons.ornl.gov/ptax

Neutron Powder Diffractometer • HB-2A

Structural studies, magnetic structures, texture and phase analysis

neutrons.ornl.gov/powder

WAND² • HB-2C

Diffuse-scattering studies of single crystals and time-resolved phase transitions

neutrons.ornl.gov/wand

Polarized Neutron Development Station • HB-2D

Development of new components and techniques for utilizing polarized neutrons

neutrons.ornl.gov/ntd

Reactor Pressure Vessel

Cold Neutron Source

HFIR Instrument Suite

Development Beam Line · CG-1A **Detector development**

and testing

neutrons.ornl.gov/ntd

Beam Line · CG-1B Sample alignment and optics General-Purpose SANS · neutrons.ornl.gov/ntd

Materials structure and processing, metallurgy, polymers, geophysics, high-Tc superconductors, complex fluids, magnetism and spin textures

CG-2

neutrons.ornl.gov/gpsans

Cold Neutron Imaging Beam Line • CG-1D

Optics

Development

Transmission imaging of natural and engineered materials

neutrons.ornl.gov/imaging

Bio-SANS · CG-3

Proteins and complexes, pharmaceuticals. biomaterials

neutrons.ornl.gov/biosans

Neutron Residual Stress Mapping Facility • HB-2B

Strain, texture, and phase mapping in engineering materials

neutrons.ornl.gov/nrsf2

Triple-Axis Spectrometer • HB-3

Medium- and high-resolution inelastic scattering at thermal energies

neutrons.ornl.gov/tax

Four-Circle Diffractometer • HB-3A

Small unit-cell nuclear & magnetic structural

studies neutrons.ornl.gov/hb3a

Polarized Neutron Development Station •

CG-4A/4B Development of larmor

precession techniques neutrons.ornl.gov/ntd

Cold Neutron Triple-Axis Spectrometer · CG-4C

High-resolution inelastic scattering at cold neutron energies

neutrons.ornl.gov/ctax

Image-Plate **Single-Crystal** Diffractometer (IMAGINE) · CG-4D

Atomic resolution structures in biology, chemistry and complex materials

neutrons.ornl.gov/imagine

SNS Instrument Suite

Advanced Neutron Optics: IMAGINE

Future Instruments: Larmor Pression

Spin-Echo Scattering Angle Measurement:

The neutron spin precesses through two magnetic regions with opposite field directions. For scattered neutrons the path-length through the two regions is different resulting in a net change in the spin procession.

- Real space correlation lengths up to 20 microns (and beyond?)
- Does not require tight collimation for high resolution
- Can be used to probe the in-plane correlations of thin films and interfaces.

Concluding Remarks

- Instrument design is driven by the needs of the scientific community coupled with the source capabilities along with advances in neutron optics and detectors.
- In the near term instrument development will be primarily focused on:
 - Focusing optics
 - Neutron transport
 - Polarization
 - Detectors
 - Instrument development infrastructure (computer simulations)
 - New techniques and applications