Polarized Triple-Axis Spectrometer

The HB-1 Polarized Triple-Axis Spectrometer is designed primarily for the study of excitations in crystalline solids at intermediate energies. Thanks to the vertical beam focusing and the very high time-averaged flux at HFIR, its geometry is optimal for investigating small samples and weak scattering in specific areas of energy-momentum space. The sample goniometers and a full software implementation of the three-dimensional sample orientation matrix allow measurements outside the traditional single-scattering plane. The unique capability of HB-1 is the polarized configuration for studies of excitations, phase transitions, structures, and density distributions in magnetic materials.

Using the Wollaston Prisms setup, ultra-high energy and Q resolution measurements have become possible (https://fankangli.ornl.gov/). The newly implemented spherical neutron polarimetry (SNP) enables the measurement of full polarization change in the scattering process, providing a unique way to study complex magnetic structures (jiangc@ornl.gov).

APPLICATIONS

- Spin and lattice excitations in hard condensed matters, including superconductors, quantum materials, frustrated materials, and topological materials
- Spin density distributions in magnetic compounds
- Detailed spin structure, including chirality
- Larmor Diffraction with ultra-high Q resolution ($\Delta d/d \sim 10^{-6}$ for thermal expansion and $\Delta d/d \sim 3x10^{-4}$ for the measurements of split of Bragg peak)
- Inelastic Neutron Spin Echo with ultra-high energy resolution (\sim 10 μ eV) for linewidth measurements

CDE		$I \subset \Lambda T$	IONS
SPE	CIL	ICAI	CINO

Beam spectrum	Thermal	
Monochro- mators	Unpolarized vertical focus PG(002) Polarized Vertical Focus Heusler(111)	
Analyzers	Unpolarized fixed vertical focus PG(002), Be(101), Si(111) Polarized Heusler (111)	
Monochro- mator angle	$2\Theta_{\rm M} = 14 \text{ to}$ 45°	
Sample angle	±180°	
Scattering angle	-90 to 120°	
Analyzer angle	-40 to 140°	
Collimations (FWHM)	Premonochro- mator: 15′, 30′, 48′	
	Monochromator-sample: 20′, 40′, 60′, 80′	
	Sample-analyz- er: 20′, 40′, 60′, 80′	
	Analyzer-detector: 20', 70', 90', 120', 210', 240'	
Detector	Single ³ He gas counter	
Resolution (elastic)	5–10% Ei (adjustable with collimators)	

21-G02328/jdh Dec 2021

For more information, contact

Masaaki Matsuda, matsudam@ornl.gov, 865.574.6580 neutrons.ornl.gov/ptax

