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Small Angle Scattering (SANS or SAXS) Is Used to
Measure Large Objects (~10 nm to ~1 um)

Recall that :
O=k ’—l% =2k, sin@ for elastic scattering
and that
A=2nlk=2n/(Q/2s1n@)=4rxsinf/Q

so we can rewrite Bragg'slaw A = 2d sinf as
d =2n/Q or forsmalléd d = 4/26

‘‘‘‘‘‘‘‘‘

i.e. small Q => large length scales

Scattering at small angles probes
large length scales

—— 7 -8

Typical scattering angles for SANS are ~ 0.3° to 5°



Typical SANS/SAXS Applications

* Biology
— Organization of biomolecular complexes in solution

— Conformation changes affecting function of proteins, enzymes, protein/DNA
complexes, membranes etc

— Mechanisms and pathways for protein folding and DNA supercoiling

* Polymers
— Conformation of polymer molecules in solution and in the bulk
— Structure of microphase separated block copolymers
— Factors affecting miscibility of polymer blends

* Chemistry

— Structure and interactions in colloid suspensions, microemeulsions,
surfactant phases etc

— Mechanisms of molecular self-assembly in solutions



Biological Applications of SANS

Studying Biological Macromolecules in Solution
— Proteins

— Nucleic Acids

— Protein-nucleic acid complexes

— Multi-subunit protein complexes

— Membranes and membrane components

— Protein-lipid complexes

One of the issues with studying bio-molecules is that most
contain H which gives a large, constant background of
iIncoherent scattering. To avoid this:

— Use D,0 instead of water as a fluid for suspension

— May need to deuterate some molecular components



The Concept of SANS & SAXS

« Measure scattering at small angles & azimuthally average for
Isotropic samples
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SANS in Practice
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velocity selector ﬂ = position sensitive

20 defe‘c’ror

Need a way to determine neutron wavelength
— Velocity selector or TOF

To measure the scattering angle accurately, we need to
define the incident beam trajectory very well

Increase scattering by increasing lateral size of sample
— (2) & (3) => the instrument has to be long (40m max for D11 at ILL)



The NIST 30m SANS Instrument Under Construction




Where Does SANS Fit As a Structural Probe?

Crystallography

Atomic Structures

Microstructure

Viruses

Structure

Grain Structures

« SANS resolves structures
on length scales of 1 — 1000
nm

* Neutrons can be used with
bulk samples (1-2 mm thick)

* SANS i1s sensitive to light
elements such as H, C & N

* SANS 1is sensitive to
1sotopes such as H and D



Instrumental Resolution for SANS/SAXS

2 5 , ,
Q:4_”sin0 — 5_Q2 _ % . [ cos 62?.59
A 0 A sin” @

) 2
~ 5% and @ is small, so <§ > =0.0025+ <—é;2 >

For equal source - sample & sample - detector distances of L and equal

apertures at source and sample of h, 60,, . =+/5/12h/L.
The smallest value of @ is determined by the direct beam size: 260 .. ~1.54/L

For SANS, (0A/A)

rms

At this value of 8, angular resolution dominates and
OQ s ~ (001167 O i )Q i ~ OO 47w /A~ QLr/ A)h/ L
The largest observable objectis ~ 27/ 0Q . ~ AL/ h . Cm——

This achieves a maximum of about 5 #m at the ILL 40 m SANS instrument using

rms

15 A neutrons.
Note that at the largest values of &, set by the detector size and distance from the

sample, wavelength resolution dominates.
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THIS IS A BACK UP SLIDE
Delta-theta/theta-min ~ 1 so delta_Q_rms ~ Q_min ~ (2.pi/lambda) h/L
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The Fermi Pseudo-Potential for Neutrons

do 1 1
Z - Where the sum is over probabilities of all transitions

aQ  ©dQ A
Lo 2]
(% >‘ == Pryr

where p, is # of momentum states in d€2, per unit energy, for neutrons in state k'

2

By Fermi's Golden Rule : Z ng%, = 277[ o
k'in dQ

JAV(F)ei(];_Igl)jdl_’:
Y

Using standard "box normalization", the volume per k state is (277)’ /Y where Y = box volume

27142 27 1
Final neutron energy is E'= nk = dE'= I dk SO
m
p,dE'=number of wavevector states in volume k"’ dk'dQQ = (ZY)3 k" dk' dQ
7T
: number of wavevector states Y . m
ie. pp = : = k'
dE 2z) h
Further, @ =incident flux = density x velocity = %Ek Fermi pseudopotential
m /
- 2 a2 2
So, 4o _Ym 12w Y ,.m dQKk' =( m Zj ‘ [y 7 ai so| ¥(r)= 27 b 5(7)
dQ k hdQ h (27) h 27h
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The argument here is that we can use Fermi’s golden rule to get an expression for the scattering cross section in terms of the interaction potential between neutron and nucleus. Given our previous expression in terms of b, this allows us to identify the pseudo potential (basically a potential that gives the same phase shift as the actual potential)
Fermi’s Golden rule: The transition rate out of a state is: sum over final states of 2*pi/hbar times the square of a matrix element that links the final and initial states times the density of final states per unit energy range. This gives  d(sigma)/d(omega) = (m/2*pi*hbar^2)^2 times the square of the FT of V(r)



Use V(r) to Calculate the Refractive Index for Neutrons

2
The nucleus - neutron potential is given by :  V(7) = 270 bo(r) for asingle nucleus.
m
. .. _ 27k’ 1
So the average potential inside the mediumis: V = o where p= Zbl.
m volume

i

p 1s called the nuclear|Scattering Length Density (SLD) + used for SANS & reflectometry

2712
The kinetic (and total) energy of neutron in vaccuum is £ = h2 Ky
m
2k2 .
Inside the medium the total energy is 5 +V
m
272 2712 2712 2
: : _ 2
Conservation of energy gives Mk, = Ik +V = nk + il p or ki —k>=4np
2m 2m 2m m

Since k/k, = n = refractive index (by definition), and p is very small (~ 10° A™) we get :
n=1-1pl/2x

Since generally n < 1, neutrons are externally reflected from most materials.




Why do we Care about the Refractive Index?

 When the wavevector transfer Q is small, the phase factors
In the cross section do not vary much from nucleus to
nucleus & we can use a continuum approximation

 We can use all of the apparatus of optics to calculate
effects such as:

External reflection from single surfaces (for example from guide surfaces)
External reflection from multilayer stacks (including supermirrors)
Focusing by (normally) concave lenses or Fresnel lenses

The phase change of the neutron wave through a material for applications
such as interferometry or phase radiography

Fresnel edge enhancement in radiography



Refractive Index for x-rays

n=1-o+ipf
0
270,/ O g o

2k
P, 1s the atomic number density; k 1s the x - ray wavevector

where o =

u 1s the absorption coefficient (i.e. intensity decreases as e ™)

inkz

The wave outside the medium is ¢”; inside the medium it is e

Note the we can also write :

—%{f0(0)+f'+if"} with ﬁ:_l:zﬂl-fzaro:lf"

n=1

SO f"={ 2 },B:{ 2 ]u —[ k jaa because u=p,o0,

27p, 1y 2o, |2k \4m;
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Sigma_a is the absorption cross section


Remember — = bwh<

Scattering Length Density

)

[dr.e@n,, ()

What happens if Q is very small?
— The phase factor will not change significantly between neighboring atoms
— We can average the nuclear scattering potential over length scales ~2[1/10Q
— This average is called the scattering length density and denoted £(7)

How do we calculate the SLD?
— Easiest method: go to www.ncnr.nist.gov/resources/sldcalc.html

By hand: let us calculate the scattering length density for quartz — S10,

Density is 2.66 gm.cm>; Molecular weight is 60.08 gm. mole™!

Number of molecules per A3 =N = 10-24(2.66/60.08)*N,, ;040 = 0.0267 molecules per A3
SLD=Xb/volume = N(bg; + 2b) = 0.0267(4.15 + 11.6) 10° A2 = 4.21 x10-6 A~

A uniform SLD causes scattering only at Q=0; variations in the SLD cause
scattering at finite values of Q
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Density/MW = # of moles per cm^3; multiply by Avagadro’s number gives number of molecules per cm^3.


SLD Calculation

« www.ncnr.nist.gov/resources/sldcalc.html
* Need to know chemical formula

and density
— Compound
Enter
— > Density (g/cma3)
Not relevant for SLD Wavelength (A)

Neutron SLD

— CuKa SLD

X-ray values
—— Mo Ka 5LD

Background ——» Neutron Inc. X5
MNeutron Abs. X5
Determine best sample thickness

Neutron 1 /e length

CeH12
0.86

b

-3.07E-7 (Ar-2)
8.34E-6 +9.36E-9i (Ar-,
8.33E-6 +2.08E-9i (AN-,
5.93; 33.4 (cmA-1)
0.0823 (cmA-1)

0.166 (cm)

Note units of the cross section — this is cross section per unit volume of sample
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SANS Measures Particle Shapes and Inter-particle Correlations

Z—é:(b)z j d’r j d*r'n, (F)n, (F)e0 "

space space

2

= [ &R [dR(n,(Ryn,(R))e> "™

space space

(p=py) [d'xe®

particle

orientation

do = 2 ~  GR
5= (=P |[FQ) VN, [d'RG(R).*"

where G, 1s the particle - particle correlation function (the probability that there

1s a particle at R if there's one at the origin) and ‘F(Q)‘2 1s the particle form factor :

2
‘F(Q)‘z = Vipz _‘;clzﬂx.e@j
particle

orientation

These expressions are the same as those for nuclear scattering except for the addition
of a form factor that arises because the scattering is no longer from point-like particles
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Note that these expressions look exactly the same as the ones for scattering from an assembly of nuclei, except that we now have a form factor involved because the scatterer (the particle) is no longer point like (I.e. it’s dimensions are not << neutron wavelength. We would have had a very similar form factor if we had talked about x-ray scattering due to the distribution of the electron cloud. The form factor also came in when we talked about magnetic neutron scattering, for the same reason 
Note, this assumes no correlation between particle orientation and interparticle corelations


Scattering from Independent Particles

Scattered intensity per unit volume of sample = [ (Q) _ldo_ = <‘ J' p(r)e’Q "dr

Vda vV

)

2
Ve Py Matrix .
P scalttering density

\ &\ homogeneous particle O

with scattering density, Pp

For identical particles

7 e

p particle

1(Q) = —(Pp Po)” ,;2<

/

contrast factor

particle form factor [#@f

Note that 1(0)= %(pp — ,00)2Vp2

Particle concentration ¢ =NV, /V and particle molecular weight M, = pV’ N,

where p 1s the particle mass density and N ,1s Avagadro's number

M : : :
so 1(0)= it (o, - p,)° provides a way to find the particle molecular weight

PN,
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Average is over particle orientations


Scattering for Spherical Particles

2

- |2
The particle form factor ‘F (Q)‘ = is determined by the particle shape.

J‘dlj;eiéf
vV

For a sphere of radius R, F(Q) only depends on the magnitude of Q:

j1(QR) — Vo atQ=0

e (Q):3V{sinQR—QRcosQR}_3VO

(OR)’ " OR

Thus, as Q — 0, the total scattering from an assembly of uncorrelated spherical
particles[i.e. when G(r) — o(T)]is proportional to the square of the particle volume
times the number of particles.

For elliptical particles
replace R by :

R — (a’sin’9+b*cos” $)"?
where 4 1s the angle between

the major axis (a) and Q




Radius of Gyration Is the Particle “Size” Usually
Deduced From SANS Measurements

If we measure 7 from the centroid of the particle and expand the exponential

in the definition of the form factor at small Q :
F(Q) = [ dFe” =V, +W —%I(Q.F)Zd% o
14 V 14

w
erz 0
+.o.. | =V 1-——=+. =V °©

, jcoszﬁsinﬁ.dﬁ j’”zaﬂ’”
=V,|1- 4

0
2 fsm 6.d0 I d’r
0

Vo

where 1, 1s the radius of gyrationis r, = j R°d’r/ j d’r. Itis usually obtained from a fit
V V

to SANS data at low Q (in the so - called Guinier region) or by plotting In(Intensity) v Q”.

The slope of the data at the lowest values of Q is rg2/3. It is easily verified that the

expression for the form factor of a sphere 1s a special case of this general result.
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The radius of gyration formula is easily verified for a sphere from the form given on the previous VG. The way I have written the eqn with integral of cos squared times sin over intergral of sin comes about because I need the cos squared for the dot product of Q and r. The sin theta d(theta) piece is just the usual volume element in spherical coordinates. I divide by the integral of sin theta d(theta) because that’s the theta dependence that I would normally have in the integral of r squared over the body
Need to be careful when we fit SANS data at low Q that we really are in the Guinier region


Determining Particle Size From Dilute Suspensions

Particle size is usually deduced from dilute suspensions in which inter-particle
correlations are absent

In practice, instrumental resolution (finite beam coherence) will smear out
minima in the form factor

This effect can be accounted for if the spheres are mono-disperse

For poly-disperse particles, maximum entropy techniques have been used
successfully to obtain the distribution of particles sizes

5 T 7 -~ — — —

o EXPERIMENT SMEARED BY INSTRUMENTAL
RESOLUTION

4 :0“( e DESMEARED CURVE

0 0.0t 0.02 0.03

4
Q= —Esin o IA-1]
A

Fig. 4. Plot of In I(Q) vs Q for 3-98 vol.% mono_disperse PMMA-H
spheres (core C1) in D,O/H,0O mixtures.



Correlations Can Be Measured in Concentrated Systems

« A series of experiments in the late 1980’ s by Hayter et al and Chen et al
produced accurate measurements of S(Q) for colloidal and micellar systems

« To alarge extent these data could be fit by S(Q) calculated from the mean
spherical model using a Yukawa potential to yield surface charge and screening
length

1.6 2.0
o
3 v
o )
“
€ o8 1.0
0
e~
=)
~
o
0.0L= 0.0
0.0 1.0 20
Q/nm™

Fig. 2. Observed (@) and calculated ( ) scattered inten-
sity I1(Q) as a function of momentum transfer Q for a charged
micellar  dispersion: 003 moldm~™3  hexadecyltrimethyl-
ammonium chloride in D,0O at 313 K. The functions P(Q) and

S(Q) are discussed in the text. (1 barn sterad™'=10"2% M?
sterad ™).



Contrast & Contrast Matching

p{10 cm 1}

{ ' — _
[de-Fhosphatidylcholine

RNA
DN &,

Water

Frteins

B S gar
I e salts

B E—
- Phosphatidvicholine

NEUTRONS
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D,O

v \0,

Protein

Water

Lipid

12

- 12

15

14

111

* Chart courtesy of Rex Hjelm

Both tubes contain borosilicate beads +

pyrex fibers + solvent. (A) solvent
refractive index matched to pyrex;. (B)
solvent index different from both beads
and fibers — scattering from fibers

dominates



Scattering Length Density (10'° em™)

8.0

ol
o

B
=

N
=

o
o

Contrast Variation

Delﬁerated Lipid Head Group

CD,

—

Deuterated Protein

¥

Protein

40 60 80
% DED in Solvent



|Isotopic Contrast for Neutrons

Hydrogen  Scattering Length Nickel Scattering Lengths
Isotope b (fm) Isotope b (fm)
H -3.7409 (11) BN 15.0 (5)
2p 6.674 (6) 60Nj 2.8 (1)
T 4.792 (27
27) *INi 7.60 (6)
**Ni -8.7 (2)

*Ni -0.38 (7)
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Neutron scattering lengths of isotopes can be very different
Potential for changing local scattering length density by isotopic labeling:  1H -> 2D to change r of a component or portion of the structure is an important application of this.
Applications in neutron optics.
Neutron scattering is due largely to the nuclear potential.  Consequently, different isotopes have different scattering lengths.  The difference between hydrogen and deuterium is particularly important in this regard, as this provides a ready means of labeling molecules containing light elements.  Other elements, such as tungsten and nickel, share this attribute.  The later is important for the development of neutron optical devices, such as neutron reflecting mirrors. 



		Hydrogen Isotope

		Scattering Length 


b (fm)



		1H

		-3.7409 (11)



		2D

		6.674 (6)



		3T

		4.792 (27)






		Nickel 


Isotope

		Scattering Lengths b (fm)



		58Ni

		15.0 (5)



		60Ni

		2.8 (1)



		61Ni

		7.60 (6)



		62Ni

		-8.7 (2)



		64Ni

		-0.38 (7)






Using Contrast Variation to Study Compound Particles

Examples include nucleosomes

L(Q) = (o —;f:’z)2 Fi (protein/DNA) and ribosomes
(poteins/RNA)
2
N

2 1(0)=—/{ |Ap, | " dF, + Ap, | ¢ dF

LQ) =(p -p1) F> V< lil 1 2V{ ’ >
10 =82 (@) )+ 403 (|10 ) +

in(QR;, )

A AP | ()P (0122
h(Q)-HI(Q} h};m@) OR,;

=2(p - Po)( P2 — Po) FiF 2 SEQ(%M
1

=0 atQ=7/R,,

Viewgraph from Charles Glinka (NIST)



Porod Scattering

Let us examine the behavior of ‘F(Q)‘2 (OR)" at large values of Q for a spherical

particle (i.e. Q >> 1/R where R is the sphere radius)

sin OR — OR.cos OR

(OR)’

—9V*cos’ORasQ — w

=9)* /2 on average (the oscillations will be smeared out by resolution)
o 274

2(0R)"  O°

i 4 qrr2| SMOR
} (OR) —9V{ OR

‘F(Q)‘z(QRf = 9V2[ —Cos QR}

Thus ||[F(O) —

where A 1s the area of the sphere's surface.

This 1s Porod's law and holds as Q — o for any particle shape provided the particle
surface 1s smooth.
Another way to obtain it is to expand G(r) = 1-ar + br” +..[with a = A/(27V)] at small r

and to evaluate the form factor with this (Debye) form for the correlation function.



Scattering From Fractal Systems

Fractals are systems that are “self-similar” under

a change of scale l.e. R -> CR

For a mass fractal the number of particles within
a sphere of radius R is proportional to RP where

D is the fractal dimension

Growth in 2D leads to a variety of values of D

Thus

Reaction-limited

Ballistic

Diffusion-limited

Particle-cluster

Cluster-cluster

Dy = 2.09

D¢ =1.95

47R’dR.G(R) = number of particles between distance R and R + dR = cR”"'dR

.. G(R)=(c/4r)R""

and S(0) = [dRe**G(R) = %’” [ dR R.sin OR (c/ 4m)R"

1 :
=§?Idx.xl)2.smx =

For a surface fractal, one can prove that S(Q) oc

const
D

form for smooth surfaces of dimension 2.

const
6—D,

which reduces to the Porod
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Note that we should really be FT’ing G(r) –1. However this won’t matter until we get to a fractal dimension of 3, at which point we need the next term in G(r) as we saw on the last slide. Thus, the limit of the surface fractal gives Porod’s law. The mass fractal gives a slope exponent greater >-3, whereas a surface fractal gives an exponent in the range –4< exponent < -3. Porod’s law is the limiting (steepest slope) for a smooth surface 


In(T)

Typical Intensity Plot for SANS From Disordered

Systems

Zero Q intercept - gives particle volume 1f

t / concentration is known

«~ Guinier region (slope = -1,*/3 gives particle
“size”)
_— Mass fractal dimension (slope = -D)

‘\ . .
Porod region - gives surface area and

surface fractal dimension
{slope =-(6-D,)}

In(Q)



Surface Reflection Is Very Different From
Most Neutron and X-ray Scattering

We worked out the cross section by adding scattering from
different scattering centers

— We ignored double scattering processes because these are usually very weak

This approximation is called the Born Approximation

Below an angle of incidence called the critical angle, neutrons
and x-rays are perfectly reflected from a smooth surface

— This 1s NOT weak scattering and the Born Approximation is not applicable to
this case

Specular reflection is used:
— In neutron guides and x-ray mirrors
— In multilayer monochromators and neutron polarizers

— To probe surface and interface structure in layered systems



Various forms of small (glancing) angle neutron reflection

‘ Q=Q, ~1nm™

Specular reflectometry
Depth profiles
(nuclear and/or magnetic)

Off-specular (diffuse) scattering
In-plane correlated roughness

Magnetic stripes

Phase separation (polymers)

Glancing incidence diffraction
Ordering in liquid crystals

Atomic structures near surfaces
Interactions among nanodots

A~0.1-100nm Viewgraph from M. R. Fitzsimmons



Only Neutrons With Very Low Velocities
Perpendicular to a Surface Are Reflected
kilk,=n
The surface cannot change the neutron velocity parallel to the surface so:

kycosa =kcosa'=kmpmcosa' 1.e n=cosa/cosa’

Neutrons obey Snell's Law

Since k*> =k, —4np  k’(cos’ a'+sin’ a') =k, (cos’ a +sin’ a) — 4xp
ie. k’sin‘a'=k;sin®a—-4rzp or k>=k, —4np

The critical value of £, for total external reflectionis k&, =./47p

For quartz k" =2.05x107 A"

; __ 7 critical
27/ A)sIN 0 =K —

— kO
crltlcal( ) O 02 ﬂ“(A) fOf quartZ \

Note: « ) = 0.14(A4) for nickel o

critical(
How do we make a neutron bottle?



Refractive Index: X-Rays & Neutrons

n2(f)=1+ N e’ . frE)

meg wO—wQ—Zi %

_ 2 _. _magnetic
n121<r> =1 2mA V(r)+ part

Minus!! _ Absorption
Dispersion



Reflection of Neutrons by a Smooth Surface: Fresnel’ s Law

kjr-l‘ ’ikR'I‘

hr = age’ YR = age

continuity

ofy&yatz=0= K :
a, +az =dar (1) tn = 1-A*p/2m s iy
ak; +agky = ark; -  Yr=apekrT

components perpendicular and parallel to the surface::
a,kcosa+aykcosa =a,nkcosa’ (2)
—(a, —ayz)ksina =—a nksina’ (3)

(1) & (2)=>Snell's Law: |cosa =ncosa’

(1) & (3) => (a,—ay,) _, sina’ _sina’_ k,

"~/ —

(a,+aR)_ sima  sina k,

so reflectance1s givenby | r=a,/a, =(k, k. ) /(k,. +k,)




What do the Amplitudes ay and a; Look Like?

« For reflection from a flat substrate, both ag and a; are complex when k, < 47)
|.e. below the critical edge. For a, = 1, we find:

£

Real (red) & imaginary (green) parts of ay
plotted against k,. The modulus of ay 1s

plotted in blue. The critical edge is at

ky,~0.009 A-1. Note that the reflected wave 1s
completely out of phase with the incident wave

atk,=0

0.0 0.01 0.015 0.02 0.025
-0.5
-0.5

2

1.5

1

0.5

-1

0.005 0.01 0.015 0.02 0.025

Real (red) and imaginary (green) parts
of a;. The modulus of a; is plotted in
blue. Note that a; tends to unity at
large values of k,, as one would expect
and that the transmitted intensity peaks
at the critical edge.



Penetration Depth

In the absence of absorption, the penetration depth becomes infinite at large
enough angles

Because k, is imaginary below the critical edge (recall that kZ2 = kgz —4rp),
the transmitted wave is evanescent

The penetration depth A=1/Im(k) g~

1045_ A= "> E

Around the critical edge, one may

tune the penetration depth to probe = “"
different depths in the sample mzy ]

101 PR TR TR RN N TN TR SN TN N TR S TR N N SR TR SR SR N TR SR S




Measured Reflectivity

« We do not measure the reflectance, r, but the reflectivity, R given by:

R = # of neutrons reflected at Qz =r.r* o
H : Braslau et al. ;
# of incident neutrons . oo B

i.e., just as in diffraction, we lose phase

information :

1 -Ray Reflectivity

* Notice, also, that the measurement averages
the reflectivity over the surface of the sample: |
i.e. measured reflectivity depends on I YE o 030 s

p(2) = [ dvp(x.v.)

Measurement

Measured and Fresnel reflectivities
for water — difference is due to surface

roughness



Fresnel’ s Law for a Thin Film

r=(Ko,K4,)/(Ky,+Ko,) is Fresnel’ s law

Evaluate with p=4.10% A2 gives the
red curve with critical wavevector
given by k,, = (411) )12

If we add a thin layer on top of the
substrate we get interference fringes &
the reflectance is given by:

P2k, t
For T o€

r= P2k .t

1+ r,n,e

and we measure the reflectivity R = r.r*

If the film has a higher scattering length density than the substrate we get the green
curve (if the film scattering is weaker than the substance, the green curve is below
the red one)

The fringe spacing at large kg, is ~ [/t (a 250 A film was used for the figure)
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Don’t forget to say that we measure the reflectivity which is the square of the modulus of the reflectance
Note that we can get the 1/Q**4 law out of the Fresnel form. Multiply top and bottom by (k0+k1) and then replace k0**2-k1**2 by 4 pi ro. The bottom goes to (2 k0)**2 = Q**2 at large k0. This gives r ~ 4 pi ro/Q**2


Multiple Layers — Parratt Iteration (1954)

« The same method of matching wavefunctions and derivatives at
interfaces can be used to obtain an expression for the reflectivity of
multiple layers

2ik, .,z
z,j+1<j
R; ik, .z, Vel T X €
X . = J _ e z,j%j JsJ J
.] T 1+ X 2ikZ,j+IZj
J Vi j+14% j+1€
h _ kz,j _kz,j+1 vacuum 1
whnere rj,j‘i'l_k p
z,j z,j+1

Start iteration with
RN+1:XN+1:O and Ti:l layer ]

(i.e. nothing coming back from inside

substrate & unit amplitude incident wave)
layer N

layer N+1

Image from M. Tolan



Dealing with Varying Density Profiles

Any SLD depth profile can be

“chopped” into slices Slicing of Density Profile

T

\

The Parratt formalism allows the 6(2)@2})(@-—6]_1); N\
reflectivity to be calculated B /

- !
HM“ / ‘.!. jf

|7 N/

A thickness resolution of 1 A is
adequate — this corresponds to a s e ~1A
value of Q, where the reflectivity
has dropped below what

neutrons can normally measure

k)

Computationally intensive!!

Image from M. Tolan



When Does a “Rough” Surface Scatter Diffusely?

* Rayleigh criterion
\/\ _

[\ L h

path difference: & =2 h sin®
phase difference: &[] = (40h/ ) sin®
boundary between rough and smooth: &[]=0/2

that is h <| /(8sin8) for a smooth surface

g=0 >/

whereg=40hsin0/L =Q, h




Surface Roughness

« Surface roughness causes diffuse
(non-specular) scattering and so =0
reduces the magnitude of the
specular reflectivity

k1

« The way in which the specular reflection is damped depends on the length
scale of the roughness in the surface as well as on the magnitude and

distribution of roughness

“sparkling sea"model  each piece of surface

-- specular from many scatters indepedently
facets -- Nevot Croce model

R

Note that roughness
introduces a SLD
profile averaged over
the sample surface

— —2k12k1[202
Re



Kinematic (Born) Approximation

We defined the scattering cross section in terms of an incident plane wave & a
weakly scattered spherical wave (called the Born Approximation)

This picture is not correct for surface reflection, except at large values of Q,

For large Q,, one may use the definition of the scattering cross section to
calculate R for a flat surface (in the Born Approximation) as follows:

number of neutrons reflected by a sample of size L, L,

number of neutrons incident on sample (= L L sina)

dk dk
O . 1 J‘deQ _ 1 . J‘da - x. y
dQ) L.L, sina~ dQkysina

LL sma LL sma
because k. =k,cosa so dk_=-k,sinada.

From the definition of a cross section we get for a smooth substrate :

do , 47’

—— = p*|dF[di'e®T " =

o L,5(0,)5(0,) so R=167p*/ Q!

z

[t 1s easy to show that this is the same as the Fresnel form at large Q


Presenter
Presentation Notes
Make the point that the Born approx is only valid far from the critical edge where the scattering is weak
Note that the d(sigma)/d(omega) integral is done in the following way: one integral over dxdy can be done immediately because of translational invariance in the surface. This gives the L(x)L(y) term. The second integral over dxdy gives the delta functions, each multiplied by 2*pi. Finally, the dz integral is from minus infinity to 0. Doing the integral picks up the factor of one over qz each time. The value of the integral is unity at z=0 and zero at z = minus infinity


Reflection by a Graded Interface

Repeating the bottom line of the previous viewgraph but keeping the z - dependence

2167 fdp(z) o)
Qj dz

1672
0
equality follows after intergrating by parts.

where the second

of pgives: R =

j p(2)e' % dz

If we replace the prefactor by the Fresnel reflectivity R ¢, we get the right answer

for a smooth interface, as well as the correct form at large Q,
2

dz

This can be solved analytically for several convenient forms of dpo/dz such

as 1/cosh?(z). This approximate equation illustrates an important point :
reflectivity data cannot be inverted uniquely to obtain p(z), because
we generally lack important phase information. This means that models

refined to fit reflectivity data must have good physical justification.


Presenter
Presentation Notes
Try doing for yourself the simple problem of two layers on a substrate using the formula on this slide. This gives 3 delta functions for d(ro)dz: one of strength a at z=0, one of strength b at z=d1 and one of strength c at z=d2. Plugging these into the formula, you immediately find that you can’t tell the difference between the situation mentioned in the last sentence and one in which there is a delta function of strength c at z=d1 and a delta function of strength b at z=d2


Refractive Index: X-Rays

n(z) =1 2)‘72T re 0(z) - 14)‘7T 1(z)

o0 (10%em™2) §(107%)  p(em™) ac(°)

Vacuum 0 0 0
PS (CsHs), 9.5 35 4
PMMA (C;H;0,),, 10.6 4.0 7
PVC (C,H;Cl), 12.1 4.6 86
PBrS (CsH;Br),  13.2 50 97
Quartz (SiO,) 18.0-19.7 6.8-7.4 85
Silicon (Si) 20.0 7.6 141
Nickel (Ni) 72.6 27.4 407
Gold (Au) 131.5 49.6 4170

0 Q<Z> — <Q(I,y, Z>>5an

0.153
0.162
0.174
0.181
0.21-0.22
0.223
0.424
0.570

Electron Density
Profile !

E=8keV A=154A



Comparison of Neutron and X-Ray Reflectivity
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Neutrons often provide better contrast and don’ t damage samples
X-rays provide better Q resolution and higher Q values

Viewgraph courtesy of M. Tolan



The Goal of Reflectivity Measurements Is to Infer a
Density Profile Perpendicular to a Flat Interface

In general the results are not unique, but independent
knowledge of the system often makes them very reliable

— It is possible to get unique results by using different “backings”

Frequently, layer models are used to fit the data

Advantages of neutrons include:
— Contrast variation (using H and D, for example)
— Low absorption — probe buried interfaces, solid/liquid interfaces etc
— Non-destructive

— Sensitive to magnetism
— Thickness length scale 10 — 5000 A

Issues include
— Generally no unique solution for the SLD profile (use prior knowledge)
— Large samples (> 1 cm?) with good scattering contrast are needed for neutrons



What do Specular and Off-specular scattering
measure?

e Specular reflectivity measures variations in scattering
density normal to surface (averaged over X,y plane)

« Off-specular scattering measures (Xx,y) variations of
scattering density, €.g. due to roughness, magnetic
domains, etc.



Vector Diagram for Q in GISAXS

z Reflected

2
=—C0s6, cos¢

Q, = =~ (cos#h, —cosH, cosp)

A
2
A
Note that the length scales measured parallel to the surface when both

k. and k¢ are 1n the specular plane are much greater than the length
scale measured perpendicular to the surface



X-Ray Reflectometers

. T Laboratory
Setup

X-ray source
rotating anode

detector

two circle goniometer
synchrotron

analyzer
("slit 3")

monochromator

Synchrotron _
Setu p det+ector

slit 4

HASYLAB: CEMO
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