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Small Angle Scattering (SANS or SAXS) Is Used to 
Measure Large Objects (~10 nm to ~1 µm)
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i.e. small Q => large length scales

Scattering at small angles probes
large length scales

Typical scattering angles for SANS are ~ 0.3º to 5º



Typical SANS/SAXS Applications

• Biology
– Organization of biomolecular complexes in solution
– Conformation changes affecting function of proteins, enzymes, protein/DNA 

complexes, membranes etc
– Mechanisms and pathways for protein folding and DNA supercoiling 

• Polymers
– Conformation of polymer molecules in solution and in the bulk
– Structure of microphase separated block copolymers
– Factors affecting miscibility of polymer blends

• Chemistry
– Structure and interactions in colloid suspensions, microemeulsions, 

surfactant phases etc
– Mechanisms of molecular self-assembly in solutions 



Biological Applications of SANS

• Studying Biological Macromolecules in Solution
– Proteins
– Nucleic Acids
– Protein-nucleic acid complexes
– Multi-subunit protein complexes 
– Membranes and membrane components
– Protein-lipid complexes

• One of the issues with studying bio-molecules is that most 
contain H which gives a large, constant background of 
incoherent scattering. To avoid this:
– Use D2O instead of water as a fluid for suspension 
– May need to deuterate some molecular components



The Concept of SANS & SAXS

• Measure scattering at small angles & azimuthally average for 
isotropic samples



SANS in Practice

1. Need a way to determine neutron wavelength
– Velocity selector or TOF

2. To measure the scattering angle accurately, we need to 
define the incident beam trajectory very well

3. Increase scattering by increasing lateral size of sample
– (2) & (3) => the instrument has to be long (40m max for D11 at ILL) 



The NIST 30m SANS Instrument Under Construction



Where Does SANS Fit As a Structural Probe?

• SANS resolves structures 
on length scales of 1 – 1000 
nm

• Neutrons can be used with 
bulk samples (1-2 mm thick)

• SANS is sensitive to light 
elements such as H, C & N

• SANS is sensitive to 
isotopes such as H and D 



Instrumental Resolution for SANS/SAXS
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The Fermi Pseudo-Potential for Neutrons
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The argument here is that we can use Fermi’s golden rule to get an expression for the scattering cross section in terms of the interaction potential between neutron and nucleus. Given our previous expression in terms of b, this allows us to identify the pseudo potential (basically a potential that gives the same phase shift as the actual potential)
Fermi’s Golden rule: The transition rate out of a state is: sum over final states of 2*pi/hbar times the square of a matrix element that links the final and initial states times the density of final states per unit energy range. This gives  d(sigma)/d(omega) = (m/2*pi*hbar^2)^2 times the square of the FT of V(r)




Use V(r) to Calculate the Refractive Index for Neutrons
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Why do we Care about the Refractive Index?

• When the wavevector transfer Q is small, the phase factors 
in the cross section do not vary much from nucleus to 
nucleus & we can use a continuum approximation

• We can use all of the apparatus of optics to calculate 
effects such as:
– External reflection from single surfaces (for example from guide surfaces)
– External reflection from multilayer stacks (including supermirrors)
– Focusing by (normally) concave lenses or Fresnel lenses
– The phase change of the neutron wave through a material for applications 

such as interferometry or phase radiography
– Fresnel edge enhancement in radiography



Refractive Index for x-rays
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Sigma_a is the absorption cross section



Scattering Length Density

• Remember

• What happens if Q is very small? 
– The phase factor will not change significantly between neighboring atoms
– We can average the nuclear scattering potential over length scales ~2�/10Q 
– This average is called the scattering length density and denoted

• How do we calculate the SLD?
– Easiest method:  go to www.ncnr.nist.gov/resources/sldcalc.html
– By hand: let us calculate the scattering length density for quartz – SiO2
– Density is 2.66 gm.cm-3; Molecular weight is 60.08 gm. mole-1

– Number of molecules per Å3 = N = 10-24(2.66/60.08)*Navagadro = 0.0267 molecules per Å3

– SLD=Σb/volume = N(bSi + 2bO) = 0.0267(4.15 + 11.6) 10-5 Å-2 = 4.21 x10-6 Å-2

• A uniform SLD causes scattering only at Q=0;  variations in the SLD cause 
scattering at finite  values of Q
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Density/MW = # of moles per cm^3; multiply by Avagadro’s number gives number of molecules per cm^3.



SLD Calculation

• www.ncnr.nist.gov/resources/sldcalc.html
• Need to know chemical formula 

and density

Not relevant for SLD

X-ray values

Background

Determine best sample thickness

Note units of the cross section – this is cross section per unit volume of sample

Enter



SANS Measures Particle Shapes and Inter-particle Correlations
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of a form factor that arises because the scattering is no longer from point-like particles
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Note that these expressions look exactly the same as the ones for scattering from an assembly of nuclei, except that we now have a form factor involved because the scatterer (the particle) is no longer point like (I.e. it’s dimensions are not << neutron wavelength. We would have had a very similar form factor if we had talked about x-ray scattering due to the distribution of the electron cloud. The form factor also came in when we talked about magnetic neutron scattering, for the same reason 
Note, this assumes no correlation between particle orientation and interparticle corelations



Scattering from Independent Particles
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Scattering for Spherical Particles
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Radius of Gyration Is the Particle “Size” Usually 
Deduced From SANS Measurements
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The radius of gyration formula is easily verified for a sphere from the form given on the previous VG. The way I have written the eqn with integral of cos squared times sin over intergral of sin comes about because I need the cos squared for the dot product of Q and r. The sin theta d(theta) piece is just the usual volume element in spherical coordinates. I divide by the integral of sin theta d(theta) because that’s the theta dependence that I would normally have in the integral of r squared over the body
Need to be careful when we fit SANS data at low Q that we really are in the Guinier region



Determining Particle Size From Dilute Suspensions

• Particle size is usually deduced from dilute suspensions in which inter-particle 
correlations are absent

• In practice, instrumental resolution (finite beam coherence) will smear out 
minima in the form factor

• This effect can be accounted for if the spheres are mono-disperse 
• For poly-disperse particles, maximum entropy techniques have been used 

successfully to obtain the distribution of particles sizes



Correlations Can Be Measured in Concentrated Systems

• A series of experiments in the late 1980’s by Hayter et al and Chen et al 
produced accurate measurements of S(Q) for colloidal and micellar systems

• To a large extent these data could be fit by S(Q) calculated from the mean 
spherical model using a Yukawa potential to yield surface charge and screening 
length



Contrast & Contrast Matching

Both tubes contain borosilicate beads + 
pyrex fibers + solvent. (A) solvent 
refractive index matched to pyrex;. (B) 
solvent index different from both beads
and fibers – scattering from fibers 
dominates
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* Chart courtesy of Rex Hjelm



Contrast Variation

CD2

Deuterated Lipid Head Group

CONTRAST
∆ρ

Lipid Head Group

CH2



Isotopic Contrast for Neutrons

Presenter
Presentation Notes
Neutron scattering lengths of isotopes can be very different
Potential for changing local scattering length density by isotopic labeling:  1H -> 2D to change r of a component or portion of the structure is an important application of this.
Applications in neutron optics.
Neutron scattering is due largely to the nuclear potential.  Consequently, different isotopes have different scattering lengths.  The difference between hydrogen and deuterium is particularly important in this regard, as this provides a ready means of labeling molecules containing light elements.  Other elements, such as tungsten and nickel, share this attribute.  The later is important for the development of neutron optical devices, such as neutron reflecting mirrors. 



		Hydrogen Isotope

		Scattering Length 


b (fm)



		1H

		-3.7409 (11)



		2D

		6.674 (6)



		3T

		4.792 (27)






		Nickel 


Isotope

		Scattering Lengths b (fm)



		58Ni

		15.0 (5)



		60Ni

		2.8 (1)



		61Ni

		7.60 (6)



		62Ni

		-8.7 (2)



		64Ni

		-0.38 (7)







Using Contrast Variation to Study Compound Particles

Viewgraph from Charles Glinka (NIST)

Examples include nucleosomes
(protein/DNA) and ribosomes
(poteins/RNA)
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Porod Scattering
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Scattering From Fractal Systems

• Fractals are systems that are “self-similar” under 
a change of scale I.e. R -> CR

• For a mass fractal the number of particles within 
a sphere of radius R is proportional to RD where 
D is the fractal dimension

• Growth in 2D leads to a variety of values of D
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Note that we should really be FT’ing G(r) –1. However this won’t matter until we get to a fractal dimension of 3, at which point we need the next term in G(r) as we saw on the last slide. Thus, the limit of the surface fractal gives Porod’s law. The mass fractal gives a slope exponent greater >-3, whereas a surface fractal gives an exponent in the range –4< exponent < -3. Porod’s law is the limiting (steepest slope) for a smooth surface 



Typical Intensity Plot for SANS From Disordered 
Systems

ln(I)

ln(Q)

Guinier region (slope = -rg
2/3 gives particle 

“size”)
Mass fractal dimension (slope = -D)

Porod region - gives surface area and
surface fractal dimension 
{slope = -(6-Ds)}

Zero Q intercept - gives particle volume if 
concentration is known



Surface Reflection Is Very Different From 
Most Neutron and X-ray Scattering

• We worked out the cross section by adding scattering from 
different scattering centers
– We ignored double scattering processes because these are usually very weak

• This approximation is called the Born Approximation

• Below an angle of incidence called the critical angle, neutrons 
and x-rays are perfectly reflected from a smooth surface
– This is NOT weak scattering and the Born Approximation is not applicable to 

this case 

• Specular reflection is used:
– In neutron guides and x-ray mirrors
– In multilayer monochromators and neutron polarizers
– To probe surface and interface structure in layered systems



Various forms of small (glancing) angle neutron reflection

Viewgraph from M. R. Fitzsimmons



Only Neutrons With Very Low Velocities 
Perpendicular to a Surface Are Reflected
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Refractive Index: X-Rays & Neutrons



Reflection of Neutrons by a Smooth Surface: Fresnel’s Law
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What do the Amplitudes aR and aT Look Like?

• For reflection from a flat substrate, both aR and aT are complex when k0 < 4�〉
I.e. below the critical edge. For aI = 1, we find:

0.005 0.01 0.015 0.02 0.025

-1

-0.5

0.5

1

Real (red) & imaginary (green) parts of aR
plotted against k0. The modulus of aR is 
plotted in blue. The critical edge is at 
k0 ~ 0.009 A-1 . Note that the reflected wave is 
completely out of phase with the incident wave 
at k0 = 0

Real (red) and imaginary (green) parts
of aT. The modulus of aT is plotted in
blue.  Note that aT tends to unity at 
large values of k0 as one would expect
and that the transmitted intensity peaks
at the critical edge.
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Penetration Depth

• In the absence of absorption, the penetration depth becomes infinite at large 
enough angles

• Because kz is imaginary below the critical edge (recall that                         ), 
the transmitted wave is evanescent

• The penetration depth

• Around the critical edge, one may
tune the penetration depth to probe
different depths in the sample 

πρ42
0

2 −= zz kk

)Im(/1 k=Λ



Measured Reflectivity
• We do not measure the reflectance, r, but the reflectivity, R given by:

R = # of neutrons reflected at Qz = r.r*
# of incident neutrons

i.e., just as in diffraction, we lose phase 
information

• Notice, also, that the measurement averages
the reflectivity over the surface of the sample:
i.e. measured reflectivity depends on 

∫ ∫= ),,(1)( zyxdydx
S

z ρρ
Measured and Fresnel reflectivities
for water – difference is due to surface
roughness



Fresnel’s Law for a Thin Film
• r=(k0z-k1z)/(k1z+k0z) is Fresnel’s  law

• Evaluate with ρ=4.10-6 A-2 gives the
red curve with critical wavevector
given by k0z = (4�〉 )1/2

• If we add a thin layer on top of the
substrate we get interference fringes &
the reflectance is given by:

and we measure the reflectivity R = r.r*

• If the film has a higher scattering length density than the substrate we get the green 
curve (if the film scattering is weaker than the substance, the green curve is below 
the red one)

• The fringe spacing at large k0z is ~ �/t (a 250 A film was used for the figure)
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Don’t forget to say that we measure the reflectivity which is the square of the modulus of the reflectance
Note that we can get the 1/Q**4 law out of the Fresnel form. Multiply top and bottom by (k0+k1) and then replace k0**2-k1**2 by 4 pi ro. The bottom goes to (2 k0)**2 = Q**2 at large k0. This gives r ~ 4 pi ro/Q**2



Multiple Layers – Parratt Iteration (1954)

• The same method of matching wavefunctions and derivatives at 
interfaces can be used to obtain an expression for the reflectivity of 
multiple layers
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Dealing with Varying Density Profiles

• Any SLD depth profile can be 
“chopped” into slices 

• The Parratt formalism allows the 
reflectivity to be calculated

• A thickness resolution of 1 Å is 
adequate – this corresponds to a 
value of Qz where the reflectivity 
has dropped below what 
neutrons can normally measure

• Computationally intensive!!

Image from M. Tolan



When Does a “Rough” Surface Scatter Diffusely?

• Rayleigh criterion

path difference:      ⊗r = 2 h sinθ

phase difference:    ⊗∏ = (4�h/ ) sinθ

boundary between rough and smooth:  ⊗∏= �/2

that is           h <  /(8sinθ)      for a smooth surface



  h

where g = 4 � h sin θ /   = Qz h



Surface Roughness

• Surface roughness causes diffuse 
(non-specular) scattering and so 
reduces the magnitude of the 
specular reflectivity

k  1  
k  2  

k  t 1  

z 

x 

θ 1 θ 2 z   =   0  

• The way in which the specular reflection is damped depends on the length 
scale of the roughness in the surface as well as on the magnitude and 
distribution of roughness

“sparkling sea”model 
-- specular from many 
facets

each piece of surface
scatters indepedently
-- Nevot Croce model

Note that roughness
introduces a SLD
profile averaged over
the sample surface
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Kinematic (Born) Approximation

• We defined the scattering cross section in terms of an incident plane wave & a 
weakly scattered spherical wave (called the Born Approximation)

• This picture is not correct for surface reflection, except at large values of Qz

• For large Qz, one may use the definition of the scattering cross section to 
calculate R for a flat surface (in the Born Approximation) as follows:
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Make the point that the Born approx is only valid far from the critical edge where the scattering is weak
Note that the d(sigma)/d(omega) integral is done in the following way: one integral over dxdy can be done immediately because of translational invariance in the surface. This gives the L(x)L(y) term. The second integral over dxdy gives the delta functions, each multiplied by 2*pi. Finally, the dz integral is from minus infinity to 0. Doing the integral picks up the factor of one over qz each time. The value of the integral is unity at z=0 and zero at z = minus infinity



Reflection by a Graded Interface
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Try doing for yourself the simple problem of two layers on a substrate using the formula on this slide. This gives 3 delta functions for d(ro)dz: one of strength a at z=0, one of strength b at z=d1 and one of strength c at z=d2. Plugging these into the formula, you immediately find that you can’t tell the difference between the situation mentioned in the last sentence and one in which there is a delta function of strength c at z=d1 and a delta function of strength b at z=d2



Electron Density
Profile !

Refractive Index: X-Rays

E = 8 keV       λ = 1.54 Å



Comparison of Neutron and X-Ray Reflectivity

Viewgraph courtesy of M. Tolan

Neutrons often provide better contrast and don’t damage samples
X-rays provide better Q resolution and higher Q values



The Goal of Reflectivity Measurements Is to Infer a 
Density Profile Perpendicular to a Flat Interface

• In general the results are not unique, but independent 
knowledge of the system often makes them very reliable
– It is possible to get unique results by using different ”backings”

• Frequently, layer models are used to fit the data
• Advantages of neutrons include:

– Contrast variation (using H and D, for example)
– Low absorption – probe buried interfaces, solid/liquid interfaces etc
– Non-destructive
– Sensitive to magnetism
– Thickness length scale 10 – 5000 Å

• Issues include
– Generally no unique solution for the SLD profile (use prior knowledge)
– Large samples (> 1 cm2) with good scattering contrast are needed for neutrons



What do Specular and Off-specular scattering 
measure?

• Specular reflectivity measures variations in scattering 
density normal to surface (averaged over x,y plane)

• Off-specular scattering measures (x,y) variations of 
scattering density, e.g. due to roughness, magnetic 
domains, etc.



Vector Diagram for Q in GISAXS

Note that the length scales measured parallel to the surface when both 
ki and kf are in the specular plane are much greater than the length 
scale measured perpendicular to the surface



X-Ray Reflectometers

Laboratory
Setup

HASYLAB: CEMO

Synchrotron
Setup



Synchrotron
Setup (APS)

Reflectivity from Liquids I
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